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Compulsory Part

1. Let N be a normal subgroup of a group G, and let m = [G : N ]. Show that am ∈ N for
every a ∈ G.

Proof. Let N be a normal subgroup of a group G and let m = [G : N ], the index of N in
G. The group G/N has order m, so by Lagrange’s theorem, the order of any element in
G/N divides m.

Consider an arbitrary element a ∈ G. The order of the left coset aN in G/N divides m.
Then (aN)m = N , so amN = N . Therefore am ∈ N .

2. Prove that the torsion subgroup T (i.e. the set of all elements having finite orders) of an
abelian group G is a normal subgroup of G, and that G/T is torsion free (meaning that
the identity is the only element of finite order).

Proof. First, e ∈ T because ord (e) = 1. For any a, b ∈ T , let m = ord (a) and n =
ord (b), then m,n ∈ Z>0. Then (ab−1)mn = amnb−mn = e. Therefore, ord (ab−1) < ∞.
Therefore, ab−1 ∈ T , and so T < G.

Since G is abelian, any subgroup of G is normal, thus T ◁G.

Let g ∈ G. Suppose gT ∈ G/T has finite order. Then (gT )k = eT for some k ∈ Z>0.
Then gk ∈ T , so (gk) has finite order. Therefore, g also has finite order, so g ∈ T .
Therefore, gT = eT . It follows that G/T is torsion-free.

3. Let G and G′ be groups, and let N and N ′ be normal subgroups of G and G′ respectively.
Let ϕ be a homomorphism of G into G′. Show that ϕ induces a natural homomorphism
ϕ∗ : G/N → G′/N ′ if ϕ(N) ⊆ N ′. (This fact is used constantly in algebraic topology.)

Proof. Let π : G → G/N and π′ : G′ → G′/N ′ be the projection maps. Consider
f = π′ ◦ ϕ. We claim that f vanishes on N . Let h ∈ N . Then f(h) = π′(ϕ(h)) = e
since ϕ[N ] ⊆ N ′ and π′[N ′] = {e}. It follows that there is a unique homomorphism
ϕ∗ : (G/N) → (G′/N ′) such that ϕ∗ ◦ π = π′ ◦ ϕ.

4. Let H and K be groups and let G = H × K. Recall that both H and K appear as
subgroups of G in a natural way. Show that these subgroups H (actually H × {e}) and
K (actually {e} ×K) have the following properties.

(a) Every element of G is of the form hk for some h ∈ H and k ∈ K.

(b) hk = kh for all h ∈ H and k ∈ K.

(c) H ∩K = {e}.
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Proof. We identify h ∈ H with (h, e) ∈ H×K, and identify k ∈ K with (e, k) ∈ H×K.

(a) For any g ∈ G = H × K, g = (h, k) for some h ∈ H, k ∈ K. Then g =
(h, e)(e, k) = hk.

(b) For any h ∈ H, k ∈ K, hk = (h, e)(e, k) = (h, k) = (e, k)(h, e) = kh.

(c) For any g = (h, k) ∈ G, g ∈ H ∩ K if and only if k = e, h = e. Therefore,
H ∩K = {e}.

5. Let H and K be subgroups of a group G satisfying the three properties listed in the
preceding exercise. Show that for each g ∈ G, the expression g = hk for h ∈ H and
k ∈ K is unique. Then let each g be renamed (h, k). Show that, under this renaming, G
becomes structurally identical (isomorphic) to H ×K.

Proof. Define ϕ : H ×K → G by ϕ(h, k) = hk.

Condition (a) says that for any g ∈ G, g = hk = ϕ(h, k) for some h ∈ H, k ∈ K.
Therefore, ϕ is surjective.

For any h1, h2 ∈ H, k1, k2 ∈ K, ϕ(h1, k1)ϕ(h2, k2) = h1k1h2k2 = h1h2k1k2 = ϕ(h1h2, k1k2)
by condition (b). Therefore, ϕ is a group homomorphism.

For (h, k) ∈ H ×K, if ϕ(h, k) = e, then hk = e. Then h = k−1 ∈ H ∩K = {e}. Then
h = k = e by condition (c). Therefore, ker(ϕ) = {(e, e)}, and so ϕ is injective.

Therefore, ϕ : H × K → G is a group isomorphism. In particular, each g ∈ G can be
written in the form hk = ϕ(h, k), where h ∈ H, k ∈ K in a unique way, and ϕ−1 : G →
H ×K defined by ϕ−1(g) = (h, k) when g = hk is an isomorphism.

6. Let G,H , and K be finitely generated abelian groups. Show that if G×K is isomorphic
to H ×K, then G ≃ H .

Proof. Let G,H , and K be finitely generated abelian groups. Suppose that G × K is
isomorphic to H ×K. By the fundamental theorem of finitely generated abelian groups,

G ≃ Zr1 ×Z/q1Z× ...×Z/qs1Z, H ≃ Zr2 ×Z/q′1Z× ...×Z/q′s2Z, K ≃ Zr3 ×Z/q′′1Z×
...× Z/q′′s3Z, where r1, r2, r3, s1, s2, s3 ∈ Z≥0, and each qi, q

′
i, q

′′
i are prime powers.

Since G × K ≃ H × K, Zr1+r3 × Z/q1Z × ... × Z/qs1Z × Z/q′′1Z × ... × Z/q′′s3Z ≃
Zr2+r3 × Z/q′1Z× ...× Z/q′s2Z× Z/q′′1Z× ...× Z/q′′s3Z.

By the uniqueness part of the above theorem, r1 + r3 = r2 + r3, s1 + s3 = s2 + s3,
and (q1, ..., qs1 , q

′′
1 , ..., q

′′
s3
) is the same as (q′1, ..., q

′
s2
, q′′1 , ..., q

′′
s3
) up to reordering. Then

r1 = r2, s1 = s2 and (q1, ..., qs1) is the same as q1, ..., qs1 up to reordering. Therefore,
G ≃ H .

7. Suppose that H and K are normal subgroups of a group G with H ∩K = {e}. Show that
hk = kh for all h ∈ H and k ∈ K.
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Proof. Let h ∈ H, k ∈ K be arbitrary. Then h−1 ∈ H and k−1 ∈ K,

Since H ◁G, kh−1k−1 ∈ H so hkh−1k−1 = h(kh−1k−1) ∈ H .

Since K ◁G, hkh−1 ∈ K, so hkh−1k−1 = (hkh−1)k−1 ∈ K.

Therefore, hkh−1k−1 ∈ H ∩K = {e}. Thus, hk = kh.

Remark. Under condition 4(a), the condition 4(b) implies that 4(b’): H and K are both
normal subgroups of G. Under condition 4(c), 4(b’) implies 4(b) by question 7. Therefore
the condition 4(b) may be replaced by condition 4(b’). This is what Artin did in chapter
2.11.
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Optional Part

1. Given any subset S of a group G, show that it makes sense to speak of the smallest normal
subgroup that contains S.

Proof. Let {Nα} be the set of normal subgroups of G containing S. Then this set is
nonempty as G is such a subgroup. By Exercise 6 in Compulsory part in HW2,

⋂
Nα◁G.

It is the smallest normal subgroup of G containing S.

2. Prove that if a finite abelian group has order a power of a prime p, then the order of every
element in the group is a power of p. Can the hypothesis of commutativity be dropped?
Why, or why not?

Proof. Let G be an abelian group of order pn for some prime p and n ≥ 1. Let g ∈ G.
By Lagrange’s theorem, the order of g, denoted |g|, divides the order of G, i.e. |g| divides
pn. Since p is a prime number, any divisor of pn must be a power of p. Hence, the order
of every element in the group is a power of p.

Note that the proof only uses Lagrange’s theorem, and equally applies when the hypoth-
esis of commutativity is dropped.

3. Let G be a finite abelian group and let p be a prime dividing |G|. Prove that G contains
an element of order p.

Proof. By the structure theorem of finite generated abelian group, G =
n⊕

i=1

Zp
ri
i

. Since

p divides |G|, thus there exists some pi = p. Then the element (0, ..., 0, pri−1

i , 0, ...0) has
order p, where p

ri−1

i appears on the Zpi’s factor.

4. Show that a finite abelian group is not cyclic if and only if it contains a subgroup isomor-
phic to Zp × Zp for some prime p.

Proof. Let G be a finite abelian group. We may assume that |G| ≥ 2. Then G ≃
Zd1 × ...Zdk , where k ∈ Z>0, d1 | d2 | ... | dk, and d1 ≥ 2. If G is not cyclic, then k ≥ 2,
and Zd1 × Zd2 is a subgroup of G. Choose any prime p dividing d1. Then d1

p
Zd1 × d2

p
Zd2

is a subgroup of G isomorphic to Zp × Zp.

Conversely, if G contains a subgroup H isomorphic to Zp × Zp for some prime p. Then
for any g ∈ G, (gH)|G|/|H| = H in the group G/H . Then g|G|/|H| ∈ H . But hp = e
for any h ∈ H . Then gp|G|/|H| = e for any g ∈ G. That is, any g ∈ G has order
≤ p|G|/|H| = |G|/p. Then G is not cyclic.

5. If a group N can be realized as a normal subgroup of two groups G1 and G2, and if
G1/N ∼= G2/N , does it imply that G1

∼= G2? Give a proof or a counterexample.

Proof. Consider the two groups: Z × {0} and 2Z × Z/2Z, they have the same normal
subgroup 2Z × {0} and the quotient groups are both isomorphic to Z/2Z. But the later
group has an order 2 element while the first one does not.
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6. Suppose N is a normal subgroup of a group G such that N and G/N are finitely gener-
ated. Show that G is also finitely generated.

Proof. Let N be a normal subgroup of a group G such that both N and G/N are finitely
generated. This means that there exists a finite set S = {n1, n2, . . . , nk} that generates N
and another finite set T = {g1N, g2N, . . . , glN} that generates G/N , where each giN is
a coset of N in G.

Consider the set U = S ∪ {g1, g2, . . . , gl}, where each gi is a representative element from
the coset gNi. We claim that U generates G.

To see this, take an arbitrary element g ∈ G. Because G/N is generated by T , we can
write gN as a product of elements from T , say gN = ga1i1 Nga2i2 N . . . gamim N for some
integers a1, a2, . . . , am.

This means that g is in the coset ga1i1 g
a2
i2
. . . gamim N . But since N is generated by S, we

can write each n ∈ N as a product of elements from S, say n = nb1
j1
nb2
j2
. . . nbn

jn
for some

integers b1, b2, . . . , bn.

Therefore, we can write g as a product of elements from U , which means that U generates
G. Furthermore, U is a finite set because it is the union of two finite sets. Hence, G is
finitely generated.

7. Suppose N is a normal subgroup of a group G which is cyclic. Show that every subgroup
of N is normal in G.

Proof. Let N be a normal cyclic subgroup of G. This means there exists an element
n ∈ G such that N = ⟨n⟩ = {nk|k ∈ Z}.

Now let H be any subgroup of N . Since N is cyclic, H is also cyclic. So, there exists an
m ∈ Z such that H = ⟨nm⟩.
We need to show that for all g ∈ G and h ∈ H , ghg−1 ∈ H . We know that h = (nm)p =
nmp for some integer p.

Since N is normal in G, we have gnkg−1 ∈ N for all k ∈ Z and all g ∈ G. Therefore,

ghg−1 = g(nmp)g−1 = (gnkg−1)p ∈ N.

But since ghg−1 = (nm)p = nmp ∈ H (because H is generated by nm), we have ghg−1 ∈
H as required.

8. Show that the isomorphism class of a direct product is independent of the ordering of the
factors, i.e. G1 × G2 × · · · × Gn is isomorphic to Gσ(1) × Gσ(2) × · · · × Gσ(n) for any
permutation σ ∈ Sn.

Proof. By induction, we only need to prove it for n = 2. Let (z1, z2) ∈ Z(G1 × G2),
we have (z1, z2)(g1, g2) = (g1, g2)(z1, z2) ⇔ (z1g1, z2g2) = (g1z1, g2z2) ⇔ z1g1 =
g1z1, z2g2 = g2z2, ∀g1, g2 ∈ G2, G2 respectively. which means that Z(G1 × G2) ≃
Z(G1)× Z(G2).

For the last part, let G = G1 × ...×Gn. Then G is abelian ⇐⇒ G = Z(G) ⇐⇒ Gi =
Z(Gi) for each i ⇐⇒ each Gi is abelian.


